Nonparametric ANOVA; Homogeneity of Variances

I. Nonparametric ANOVA – Kruskal-Wallis test (\cong ANOVA by ranks)

- A. Application: whenever parametric single-factor ANOVA appropriate,
 - when parametric parametric assumptions violated: non-normal populations; \neq variances
- B. Assumption: sampled populations have same dispersions & shapes
- C. Hypotheses: H_0 : measurements the same in all k populations H_A : measurements not the same in all k populations
- D. Procedure: Rank data same as with Mann-Whitney two-sample test
- E. Test statistic:

$$H = \frac{12}{N(N+1)} \sum_{i=1}^{k} \frac{R_i^2}{n_i} - 3(N+1)$$
 n_i = # in group i; R_i=sum ranks in i

- F. Compare w/ critical values, Table B.13
- G. If k > 5 or n_i large (> 6 or 7), approximate critical values of H: X^2 w/k-1 DF
- H. If tied ranks, H an underestimate. Correction factor:

$$C = 1 - \frac{\sum t}{N^3 - N}$$

$$H_c = H/C$$

$$\sum t = \sum_{i=1}^{m} (t_i^3 - t_i)$$

$$H_c \approx H \text{ when } t_i \text{'s } << N$$

II. Test for Homogeneity of Variances - Bartlett's test

A. Hypotheses:

H₀: $\sigma_1^2 = \sigma_2^2 = ... = \sigma_k^2$ H_A: variances are not all equal

B. Test Statistic:

$$B = (\ln s_p^2) \left(\sum_{i=1}^k v_i \right) - \sum_{i=1}^k v_i \ln s_i^2 \qquad v_i = n_i - 1, \qquad s_p^2 = \text{pooled variance} = \sum SS_i / \sum v_i$$

- C. B \approx Chi-squared; critical value: $\chi^2_{\alpha,k-1}$, where k = number of samples
- E. More accurate w/ correction factor:

$$C = 1 + \frac{1}{3(k-1)} \left(\sum \frac{1}{v_i} - \frac{1}{\sum v_i} \right)$$

Corrected statistic: $B_c = B/C$ Compare B_c with $\chi^2_{\alpha,k-1}$

F. Test badly affected by deviations from normality

Not recommended to test assumptions prior to doing single-factor ANOVA, – esp. since ANOVA relatively robust to unequal variances.