1 Introduction to Analysis of Variance

- 1.1 Using multiple pairwise comparisons to test multi-sample hypothesis \rightarrow INVALID • inflated risk of type I error: P(error) = $1 - (1-\alpha)^z$ where z = no. of pairwise comparisons
- 1.2 Single Factor ANOVA Hypotheses:

*H*₀: $\mu_1 = \mu_2 = ... = \mu_{\kappa}$; *k* = # experimental groups (samples) *H*_A: group means are not all equal

- 1.3 Notation
 - 1.3.1 individual measurements: $X_{ij} = j^{th}$ measurement in i^{th} group 1^{st} subscript = group # 2^{nd} subscript = individual w/in group
 - 1.3.2 sample sizes: $n_i = \#$ in group *i* (sample size of *i*th group); $N = \sum n_i \rightarrow \text{total } \# \text{ in expt}$

1.3.3 means: 2 kinds of means: group means (group *i*): \overline{X}_i & grand mean: \overline{X}

1.3.4 Summation:
$$\sum_{i} X_{i} \qquad \sum_{i} \sum_{j} X_{ij} = \sum_{i=1}^{k} \left(\sum_{j=1}^{n_i} X_{ij} \right)$$

1.4 Linear model for single-factor ANOVA:

$$X_{ij} = \mu + \tau_i + \varepsilon_{ij}$$
 where:

 μ is the grand mean

 τ_i is the difference betw/ μ and i^{th} group mean ε_{ij} is random error within i^{th} group

assumptions: (1) $\overline{\varepsilon}_{ii} = 0$ i.e., no bias w/in sample

(2) $\operatorname{var}(\varepsilon_{ij}) = \sigma^2$ i.e., equal variances among groups (3) $\varepsilon_{ij} \sim \operatorname{normal}$

- <u>reject</u> H_0 if variation in X_{ij} influenced more by τ_i than by ε_{ij}
- do <u>not</u> reject H_0 if variation in X_{ij} influenced more by ε_{ij} than by τ_i

2 ANOVA Calculations

- 2.1 Partitioning variability & Sources of variation
 - total variability
 within group variability ("error")
 among group variability
 among group variability

(1) deviation from group mean

(2) deviation of group mean from grand mean

$$(X_{ij} - \overline{X}) = (X_{ij} - \overline{X}_i) + (\overline{X}_i - \overline{X})$$

2.2 Sums of squares & degrees of freedom:

total: total
$$SS = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (X_{ij} - \overline{X})^2$$
 total $DF = N - 1$
among-groups: among-groups $SS = \sum_{i=1}^{k} n_i (\overline{X}_i - \overline{X})^2$ among-groups $DF = k - 1$
w/in-groups: within-groups $SS = \sum_{i=1}^{k} \left[\sum_{j=1}^{n_i} (X_{ij} - \overline{X}_i)^2 \right]$
w/in-groups $DF = \text{total } DF - \text{groups } DF = N - k$

2 ANOVA Calculations (continued)

- 2.3 SS & DF are additive: total SS = groups SS + error SS
 - total DF = groups DF + error DF
- 2.4 Mean Squared Deviation from mean: divide SS by DF

groups MS =
$$\frac{\text{groups SS}}{\text{groups DF}}$$
 error MS = $\frac{\text{error SS}}{\text{error DF}}$

2.5 Summary of Calculations:

Source	Sum of squares (SS)	Degrees of freedom (DF)	Mean Square (MS)
Total	$\sum_{i=1}^k \sum_{j=1}^{n_i} (X_{ij} - \overline{X})^2$	N-1	
among groups	$\sum_{i=1}^k n_i (\overline{X}_i - \overline{X})^2$	k-1	groups SS groups DF
within groups	$\sum_{i=1}^{k} \left[\sum_{j=1}^{n_i} (X_{ij} - \overline{X}_i)^2 \right]$	N-k	error SS error DF

• Summary of calculations w/ machine formulas – Zar, Table 10.2

3 Interpreting ANOVA

- 3.1 ANOVA Hypothesis Test
 - 3.1.1 If H_o true, then groups MS & error MS each estimate common pop var (σ^2) If pop means \neq , then groups MS > error MS
 - : test for equality of means using variance ratio test w/ groups MS in numerator $F = \frac{groups MS}{max MS}$

$$F = \frac{1}{errorMS}$$

- 3.1.2 Critical value = $F_{\alpha(1),(k-1),(N-k)}$
- 3.1.3 If $F_{calc} \ge F_{crit}$, then reject $H_0 \Longrightarrow$ all k pop means not equal

 \rightarrow to determine which means differ, use multiple comparisons test (e.g., Tukey test)

3.2 ANOVA with Means & Variances only (not original data)

3.2.1 First, determine SS_i

$$s_i^2 = (s_i)^2 = n_i (s_{\overline{X}_i})^2 = \frac{SS_i}{n_i - 1}$$

3.2.2 Next, calculate error SS & groups SS

error SS =
$$\sum_{i=1}^{k} SS_i = \sum_{i=1}^{k} (n_i - 1)s_i^2$$

groups SS = $\sum_{i=1}^{k} n_i \overline{X}_i^2 - \frac{\left(\sum_{i=1}^{k} n_i \overline{X}_i\right)^2}{\sum_{i=1}^{k} n_i}$

3.2.3 Complete ANOVA using groups SS & error SS (& groups DF & error DF)

3 Interpreting ANOVA (continued)

- 3.3 Two types of ANOVA
 - 3.3.1 Fixed effects model (model I): Levels of factor (treatments) specifically chosen Hypotheses: H_0 : $\mu_1 = \mu_2 = ... = \mu_{\kappa}$
 - 3.3.2 Random effects model (model II): Levels of factor selected @ random Null hypothesis: H_0 : no difference in measurements among groups calculations identical to fixed effects model
 - 3.3.3 Distinction very important for ANOVA involving ≥ 2 factors

3.4 Assumptions

- 3.4.1 Equal sample variances
 - ANOVA fairly robust to violations, provided all n_i nearly equal if not, then different P(type I error):
 - \rightarrow if larger variances w/ larger samples, P(type I error) < α ;
 - \rightarrow if larger variances w/ smaller samples, P(type I error) > α ;
- 3.4.2 Samples from normal populations
 - ANOVA fairly robust to violations (both skew & kurtosis)

4 Confidence Limits for Population Means

4.1 Confidence Interval calculation similar to two sample case

1- α confidence limits for $\mu_i (\mu + \tau_i)$: $\overline{X}_i \pm t_{\alpha(2),\nu} \sqrt{\frac{s^2}{n_i}}$ - where s^2 is error MS & ν is error DF (= N-k)

4.2 CI calculation appropriate only when know that μ_i different than other μ 's => first must perform multiple comparison test (e.g., Tukey test)