I. Introduction to Two Factor ANOVA

- A. Factorial analysis of variance
- B. No good general nonparametric tests
- C. Experimental set-up:
 - factor A, w/ a levels
 - factor B, w/ *b* levels
 - *n* = number of replicates for each combination of factors equal replication = <u>balanced</u> experimental design
 - total # measurements = abn

D. Hypotheses:

- H₀: No effect of factor A on response variable
- H_A: Factor A does have an effect on response variable
- H₀: No effect of factor B on response variable
- H_A: Factor B does have an effect on response variable
- H₀: No effect of interaction between factors A & B on response variable
- HA: Interaction between factors A & B does have an effect on response variable
- E. Notation
 - 1. individual measurements: $X_{ijl} = l^{th}$ measurement in jth level of B & ith level of A 1^{st} subscript = factor A 2^{nd} subscript = factor B 3^{rd} subscript = replicate
 - 2. means: 4 kinds of means:
 - cell means (cell ij): \overline{X}_{ij}

level means of factor A: \overline{X}_{i} , e.g., \overline{X}_{2} .

level means of factor B: $\overline{X}_{.i}$, e.g., $\overline{X}_{.i}$

grand mean: \overline{X}

3. Summation:
$$\sum_{i} X_{i} \qquad \sum_{i} \sum_{j} \sum_{l} X_{ijl} = \sum_{i=1}^{a} \left[\sum_{j=1}^{b} \left(\sum_{l=1}^{n} X_{ijl} \right) \right]$$

II. Linear Model for Two-Factor ANOVA

 $\begin{aligned} X_{ijl} &= \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \varepsilon_{ijl} \\ \text{where:} \quad \varepsilon_{ijl} \sim N(0, \sigma^2) \quad \text{and independent of each other} \\ H_0: \quad \alpha_i &= 0 \\ H_0: \quad \beta_i &= 0 \\ H_0: \quad (\alpha\beta)_{ij} &= 0, \quad \forall ij \end{aligned}$

III. Calculations:

A. Sums of Squares & Degrees of Freedom

total: total SS =
$$\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{l=1}^{n} (X_{ijl} - \overline{X})^2$$
 total DF = $N - 1$
cells: cells SS = $\sum_{i=1}^{a} \sum_{j=1}^{b} n(\overline{X}_{ij} - \overline{X})^2$ cells DF = $ab - 1$

III. Calculations (continued):

$$\underline{\text{within-cells (error)}}: \text{ error SS} = \sum_{i=1}^{a} \sum_{j=1}^{b} \left[\sum_{l=1}^{n} (X_{ijl} - \overline{X}_{ij})^2 \right]$$

$$\text{ error DF} = ab(n-1) = \text{ total DF} - \text{ cells DF}$$

$$\underline{\text{factor A}}: \text{ factor } A \text{ SS} = bn \sum_{i=1}^{a} (\overline{X}_{i\cdot} - \overline{X})^2 \qquad \text{ factor } A \text{ DF} = a - 1$$

$$\underline{\text{factor B}}: \text{ factor } B \text{ SS} = an \sum_{j=1}^{b} (\overline{X}_{\cdot j} - \overline{X})^2 \qquad \text{ factor } B \text{ DF} = b - 1$$

$$\underline{\text{interaction}} \text{ between A \& B}:$$

$$A \times B \text{ interaction SS} = \text{ cells SS} - \text{ factor } A \text{ SS} - \text{ factor } B \text{ SS}$$

$$A \times B \text{ interaction DF} = \text{ cells DF} - \text{ factor } A \text{ DF} = a - 1$$

$$\text{ or: } A \times B \text{ interaction DF} = (\text{ factor } A \text{ DF})(\text{ factor } B \text{ DF}) = (a-1)(b-1)$$

- B. Mean Square = SS / DF
- C. Machine formulas: see Zar, table 12.2

IV. Testing Hypotheses & Models of Two-Factor ANOVA

- A. Model I ANOVA: both factors fixed
 - test each of 3 null hypotheses (A, B, interaction) independently:
 - significant interaction => difference among levels of a factor not constant w/ other factor => do not interpret factor effect if ∃ significant interaction effect
 - Hypothesis testing w/ both factors fixed:

all tests against within-cells MS (or error MS)

• Factor A:
$$\frac{\text{factor } A \text{ MS}}{\text{error } \text{MS}} \sim F_{(a-1),ab(n-1)}$$

• Factor B: $\frac{\text{factor } B \text{ MS}}{\text{error } \text{MS}} \sim F_{(b-1),ab(n-1)}$

- Interaction: $\frac{A \times B \text{ MS}}{\text{error MS}} \sim F_{(a-1)(b-1),ab(n-1)}$
- B. Model II ANOVA: both factors random:
 - test Factor A & B against interaction MS,
 - test interaction against within-cells MS (error MS)
 - Factor A: $\frac{\text{factor } A \text{ MS}}{A \times B \text{ MS}} \sim F_{(a-1),(a-1)(b-1)}$
 - Factor B: $\frac{\text{factor } B \text{ MS}}{A \times B \text{ MS}} \sim F_{(b-1),(a-1)(b-1)}$
 - Interaction: $\frac{A \times B \text{ MS}}{\text{error MS}} \sim F_{(a-1)(b-1),ab(n-1)}$

- C. Model III ANOVA (or mixed model ANOVA): one factor fixed, other random \rightarrow e.g., for A fixed, B random:
 - test fixed factor (A) against interaction MS,
 - test random factor (B) and interaction against within-cells MS (error MS)

• Factor A:
$$\frac{\text{factor } A \text{ MS}}{A \times B \text{ MS}} \sim F_{(a-1),(a-1)(b-1)}$$

factor B MS

• Factor B:
$$\frac{\text{factor } B \text{ MS}}{\text{error } \text{MS}} \sim F_{(b-1),ab(n-1)}$$

• Interaction:
$$\frac{A \times B \text{ MS}}{\text{error MS}} \sim F_{(a-1)(b-1),ab(n-1)}$$

V. Multiple Comparisons Testing

- A. If two factor ANOVA => significant differences among levels of factor,
 - use multiple comparison test, Zar chapter 11 (e.g., Tukey test)
 - s^2 = within-cells MS
 - v = within-cells DF
 - n = total # data per level, e.g., for factor A, n = bn
- B. If significant interaction between factors,

DO NOT compare means of levels of a factor instead, do multiple comparison test among <u>cell means</u>

VI. Confidence Limits of Means

same procedure as for single-factor ANOVA