ESCI 340: Biostatistical Analysis

1 Intro to Statistical Hypothesis Testing

- 1.1 Inference about population mean(s)
- 1.2 Null Hypothesis (H₀): No real difference (association, effect, etc.); \rightarrow observed difference in samples is due to chance alone
- 1.3 Alternative hypothesis (H_A): H₀ & H_A must account for all possible outcomes e.g., H₀: $\mu = \mu_0$, H_A: $\mu \neq \mu_0$
- 1.4 State hypotheses before collecting data!
- 1.5 Typical procedure:
 - 1.5.1 State/clarify the research question
 - 1.5.2 Translate the question into statistical hypotheses
 - 1.5.3 Select a significance level (α)
 - 1.5.4 Collect data (e.g., random sample)
 - 1.5.5 Look at, plot data; check for errors, evaluate distributions, etc.
 - 1.5.6 Select appropriate test
 - 1.5.7 Calculate sample(s) mean(s), standard deviation(s), standard error(s)
 - 1.5.8 Calculate the test statistic, e.g., t_{calc}
 - 1.5.9 Determine probability (P-value):

If H₀ true, probability of sample mean at least as far from μ as \overline{X}

1.5.10 If P<a, reject H₀ and accept H_A.

Otherwise indeterminate result (neither accept nor reject H_0).

1.5.11 Answer the research question

2 The Distribution of Means

- 2.1 Central Limit Theorem: random samples (size n) drawn from population
 - \rightarrow sample means will become normal as *n* gets large (in practice, *n* \geq 20)
- 2.2 Variance of sample means \downarrow as $\uparrow n$: $\sigma_{\overline{x}}^2 = \frac{\sigma^2}{n}$ $s_{\overline{x}}^2 =$

$$s_{\overline{X}}^2 = \frac{s^2}{n}$$
 $s_{\overline{X}} = \frac{s}{\sqrt{n}}$

- $\sigma_{\overline{x}}^2$ = variance of the pop. mean
- $\sigma_{\overline{x}}$ = standard error
- $s_{\overline{x}}$ = sample standard error

3 Types of Errors

- 3.1 Type I error: incorrect rejection of true null hypothesis (Probability = α)
- 3.2 Type II error: failure to reject false null hypothesis (Probability = β)
- 3.3 Two other possibilities: (1) do not reject true null hypothesis; (2) reject false null hypothesis
- 3.4 Significance level = probability of type I error (= α) Must state significance level before collecting data!
- 3.5 In scientific communication, restrict "significant" to statistical context; <u>never</u> use "significant" as synonym for "important" or "substantial"
- 3.6 Industrial statistics: α called "producer's risk" = P{reject good ones} β called "consumer's risk", = P{accept bad ones}

Introduction to Hypothesis Testing

4 Hypothesis Tests Concerning the Mean – Two-Tailed

- 4.1 Unknown σ^2 : use t-distribution (t) instead of Normal (z): $t = \frac{X \mu_0}{s_{\overline{x}}}$
- 4.2 Performing the *t*-test 4.2.1 State null (H₀) & alternative (H₀) hypotheses: e.g., H₀: $\mu = 0$, H_A: $\mu \neq 0$
 - 4.2.2 State significance level (α); e.g., $\alpha = 0.05$
 - 4.2.3 Define critical region; e.g., 2-tailed test: if P($|t_{calc}| \ge 0.05$, then reject H₀ i.e., if $|t_{calc}| \ge t_{\alpha(2),\nu}$, then reject H₀ e.g.: one sample, 2-tailed test, w/ α =0.05, and n=25 (v=24): $t_{\alpha(2),\nu} = t_{0.05(2),24} = 2.064$
 - 4.2.4 Determine \overline{X} , $s_{\overline{v}}$; e.g., $\overline{X} = 5.0$, $s_{\overline{v}} = 2.0$
 - 4.2.5 Calculate t_{calc} : $t = \frac{\overline{X} \mu_0}{s_{\overline{X}}}$; e.g., $t = \frac{5.0 0}{2.0} = 2.5$
 - 4.2.6 Find $t_{critical}$ (= $t_{\alpha(2),\nu}$) in *t*-table (Zar table B.3)
 - 4.2.7 If $t_{calc} \ge t_{critical}$, then reject H₀; otherwise do not reject H₀ e.g., for α =0.05, and n=25 (v=24) t = 2.5 > 2.064 \rightarrow reject H₀, conclude that $\mu \neq 0$
- 4.3 Cannot test hypotheses about single observation (v = n-1 = 1-1 = 0)
- 4.4 Assumptions of one sample *t*-test:
 - 1. data are a random sample
 - 2. sample from pop. with normal distribution
- 4.5 Replication: measurements must be truly replicated; avoid pseudoreplication

5 One-Tailed Tests

- 5.1 Two-tailed hypotheses: $H_0: \mu = \mu_0$, $H_A: \mu \neq \mu_0$ Difference could be positive or negative
- 5.2 One-tailed hypotheses: $H_0: \mu \le \mu_0$, $H_A: \mu > \mu_0$
- 5.3 Critical value for one-tailed test always smaller than for two-tailed (easier to get significance) e.g., for $\alpha = 0.05$, $Z_{\alpha(1)} = 1.645$ and $Z_{\alpha(2)} = 1.960$ <u>must declare hypotheses before examining data</u>
- 5.4 If $t \ge t_{\alpha(1),\nu}$ then reject H₀

ESCI 340: Biostatistical Analysis

Introduction to Hypothesis Testing

6 **Confidence Limits of the Mean**

6.1 t-distribution: indicates fraction of all possible sample means greater (or less than) t

where
$$t = \frac{X - \mu}{s_{\overline{X}}}$$

6.2 95% of all t-values occur between $t_{\alpha(2),\nu}$ and $t_{\alpha(2),\nu}$

$$P\left[-t_{0.05(2),v} \le \frac{\overline{X} - \mu}{s_{\overline{X}}} \le t_{0.05(2),v}\right] = 0.95$$

6.3 Solve for μ :

$$P\left[\overline{\overline{X}} - t_{0.05(2),v}s_{\overline{X}} \le \mu \le \overline{X} + t_{0.05(2),v}s_{\overline{X}}\right] = 0.95$$

- 6.4 95% Confidence limits of the mean: Lower limit: $\overline{X} - t_{0.05(2),v}s_{\overline{X}}$ Upper limit: $\overline{X} + t_{0.05(2),v}s_{\overline{X}}$ Concise statement: $\overline{X} \pm t_{0.05(2),v}s_{\overline{X}}$
- 6.5 General notation: 2-tailed, with sample size *n*-1, @ significance level α : $\overline{X} \pm t_{\alpha(2),\nu} s_{\overline{X}} \longrightarrow \text{e.g., 99\% confidence interval}$

6.6. Reporting variability about the mean

In table, figure, text, must show/state (& look for) 4 things:

- (1) value of mean
- (2) units of measurement
- (3) sample size, n
- (4) measure of variability, e.g., s, s^2 , $s_{\overline{x}}$, 95% CI

7 **Combining Means** Welsh, A.H. et al. (1988) The fallacy of averages. *Am. Nat.* 132(2)277-288.

- 7.1 In general, $\mu[f(X,Y)] \neq f[\mu(X),\mu(Y)]; \quad \sigma[f(X,Y)] \neq f[\sigma(X),\sigma(Y)]$
- 7.2 sum of random variables:

$$\mu(X+Y) = \mu(X) + \mu(Y) \qquad \sigma(X+Y)^2 = \sigma(X)^2 + \sigma(Y)^2 + 2\operatorname{cov}(X,Y)$$

7.3 product of random variables: $\mu(XY) = \mu(X)\mu(Y) + \operatorname{cov}(X,Y)$ if X and Y are independent, $\mu(XY) = \mu(X)\mu(Y)$

7.4 ratio of random variables: $\mu(X / Y) = \mu(X) / \mu(Y) - \operatorname{cov}(X / Y, Y) / \mu(Y)$