ESCI 340: Biostatistical Analysis

1 Test for difference between two Means (2-sample t-test)

1.1 Hypotheses:
$$H_0$$
: $\mu_1 = \mu_2$, alternatively: H_0 : $\mu_1 - \mu_2 = 0$, H_A : $\mu_1 \neq \mu_2$ H_A : $\mu_1 \neq \mu_2 \neq 0$

1.2 Assumptions

- 1.2.1 both samples from normal populations
- 1.2.2 equal population variances

$$1.3 t = \frac{\overline{X}_1 - \overline{X}_2}{s_{\overline{X}_1 - \overline{X}_2}}$$

- $s_{\overline{X}_1-\overline{X}_2}$ SE of difference betw/ means
- t depends on v, degrees of freedom
 - $v = v_1 + v_2$ or $v = n_1 + n_2 2$
- reject H₀ if $|t_{\text{calc}}| \ge t_{\alpha(2),\nu}$ (t_{α} from Zar table

B3)

1.4 Calculating $s_{\overline{X}_1 - \overline{X}_2}$

• var (difference between independent variables) = sum of individual variances,

$$\sigma_{\overline{X}_1 - \overline{X}_2}^2 = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} \qquad \Rightarrow \text{assume equal variances} \quad \sigma_{\overline{X}_1 - \overline{X}_2}^2 = \frac{\sigma^2}{n_1} + \frac{\sigma^2}{n_2}$$

• estimate
$$\sigma^2$$
; use both s_1^2 & s_2^2 : $s_p^2 = \frac{SS_1 + SS_2}{v_1 + v_2}$

• so:
$$s_{\overline{X}_1 - \overline{X}_2}^2 = \frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}$$
 and $s_{\overline{X}_1 - \overline{X}_2} = \sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}$

• finally,
$$t = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}}$$

1.5 One-Tailed test Hypotheses:

H₀:
$$\mu_1 \ge \mu_2$$
, H_A: $\mu_1 < \mu_2$; if $t \le -t_{\alpha(1),\nu}$ then reject H₀
H₀: $\mu_1 \le \mu_2$, H_A: $\mu_1 > \mu_2$; if $t \ge t_{\alpha(1),\nu}$ then reject H₀

- 1.6 Violations of Two-Sample t-test Assumptions
 - 1.6.1 normal distribution: t-test is very robust (one-tailed test sensitive to skew)
 - 1.6.2 equal variances: if unequal, greater chance of type I error (greater than α) correction: Welch's approximate t

$$t' = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \quad \text{and d.f.} \quad v' = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\left(\frac{s_1^2}{n_1}\right)^2 + \left(\frac{s_2^2}{n_2}\right)^2}}{\frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{n_1 - 1} + \frac{\left(\frac{s_2^2}{n_2}\right)^2}{n_2 - 1}}$$

– often, \vec{v} not integer; use next smallest integer (e.g., if $\vec{v} = 8.75$, use $\vec{v} = 8$)

1_hyp2.pdf (continued) McLaughlin

2 Confidence Limits for Population Means

- 2.1 $1-\alpha$ Confidence interval for pop *i*: $\overline{X}_i \pm t_{\alpha(2),\nu} \sqrt{\frac{s_p^2}{n_i}}$
- 2.2 If unequal variances, $\overline{X}_i \pm t_{\alpha(2),\nu} \sqrt{\frac{s_i^2}{n_i}}$
- 2.3 Confidence limits for difference betw means:

$$\overline{X}_i - \overline{X}_2 \pm t_{\alpha(2),\nu} s_{\overline{X}_1 - \overline{X}_2}$$

2

- 2.4 if H_0 not rejected (samples from pops w/ identical means, μ):
 - estimate of μ is weighted average of sample means: $\overline{X}_p = \frac{n_1 \overline{X}_1 + n_2 \overline{X}_2}{n_1 + n_2}$

• 1-
$$\alpha$$
 CI for μ : $\overline{X}_p \pm t_{\alpha(2),\nu} \sqrt{\frac{s_p^2}{n_i + n_2}}$

3 Testing for Difference betw Variances

- 3.1 Null Hypothesis (2-tailed): H_0 : $\sigma_1^2 = \sigma_2^2$; H_A : $\sigma_1^2 \neq \sigma_2^2$
- 3.2 Variance ratio test

$$F = \frac{s_1^2}{s_2^2}$$
 or $F = \frac{s_2^2}{s_1^2}$, whichever larger; i.e., larger sample variance in numerator

- 3.3 *F*-distribution: Zar, Table B4
 - F_{α,v_1,v_2} order of v_1 , v_2 matters; $F_{\alpha,\text{numerator df, denominator df}}$
 - if H₀ not rejected, best estimate of σ^2 is pooled variance, s_p^2
- 3.4 Variance ratio test severely affected by non-normality

4 Paired-Sample t-test

- 4.1 Paired data
- 4.2 Hypotheses:

2-tailed:
$$H_0$$
: $\mu_d = 0$, H_A : $\mu_d \neq 0$

1-tailed:

$$H_0\text{: }\mu_d \geq \mu_0, \quad H_A\text{: }\mu_d < \mu_0 \qquad \text{or:} \qquad H_0\text{: }\mu_d \leq \mu_0, \quad H_A\text{: }\mu_d > \mu_0$$

4.3 Equivalent to a one-sample test

 d_i = difference betw/ paired measurements

sample size = # pairs of data

degrees freedom = n-1

4.4 Test Statistic:

$$t = \frac{\overline{d}}{s_{\overline{d}}}$$
 \overline{d} = mean difference

 $s_{\bar{d}}$ = standard error of mean difference

- 4.5 Assumption: differences, d_i , are normally distributed
 - \rightarrow not need assumptions from 2-sample *t*-test (normality & equality of variances)

5 Confidence Limits for Mean Difference

- 5.1 similar procedure as with one-sample t-test;
- 5.2 $1-\alpha$ confidence limits for μ_d :

$$\overline{d} \pm t_{\alpha(2),v} s_{\overline{d}}$$

l_hyp2.pdf