1 Linear Models: Preliminaries

- 1.1 All models are wrong.
- 1.2 Some models are more useful than others.
- 1.3 The "correct" or "true" model never can be known.
- 1.4 In general, simpler models are better than more complex models.

2 Variables in Statistical Models

- 2.1 Response variable (categorical, numerical; binary, proportion, count, continuous)
- 2.2 Explanatory variables (categorical, numerical).

3 Model Content

- 3.1 Content range: null model, minimal adequate model, maximal model, saturated model
- 3.2 Model properties

Model	# parameters	Model fit	Degrees of freedom	Explanatory power
Null	1: mean $y(\bar{y})$	none: $SSE = SSY$	n - 1	none
Minimal adequate	$0 \le p' \le p$	≤ maximal model	n-p'-1	$r^2 = 1 - SSR / SSY$
Maximal	<i>p</i> +1		n-p-1	
Saturated	n	perfect	none	none

4 Linear Model Structure

4.1 Linear model: General form, numerical explanatory variable(s)

$$y_i = \alpha + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \beta_3 x_{i,3} + \dots + \beta_p x_{i,p} + \varepsilon_i$$
 $y_i = \text{response variable}$ $y_i = \alpha + \sum_j \beta_j x_{ij} + \varepsilon_i$ $x_i = \text{explanatory variable(s)}$ $\alpha, \beta = \text{parameters}$ $\varepsilon_i = \text{unexplained deviation}$

4.2 Assumptions

- 4.2.1 ε_i are independently and identically distributed ("iid").
- 4.2.2 mean(ε_i) = 0.
- 4.2.3 $\varepsilon_i \sim N(0, \sigma)$ [ε_i are normally distributed].

5 Model Fitting: Least Squares

Minimize residual sum of squares (SSR)

$$\sum_{i=1}^{n} \left[y_i - \left(\alpha + \sum_{j=1}^{p} \beta_j x_{ij} \right) \right]^2$$

6 Statistical Methods in Model Context

Method	Model	Response var.	Explanatory var(s)
t-test(s)	$y_i = \mu_j + \varepsilon_i$	continuous	categorical
ANOVA, 1-factor	$y_i = \mu + \beta_j + \varepsilon_i$	continuous	categorical
ANOVA, 2-factor	$y_{ijk} = \mu + \beta_i + \beta_j + (\beta_i \beta_j) + \varepsilon_{ijk}$	continuous	categorical (2)
Regression, simple	$y_i = \alpha + \beta x_i + \varepsilon_i$	continuous	continuous
Regression, multiple	$y_i = \alpha + \beta_1 x_{i,1} + \dots + \beta_p x_{i,p} + \varepsilon_i$	continuous	continuous (>1)
Regression, logistic	$y_i = \frac{e^{\alpha + \beta x_i + \varepsilon_i}}{1 + e^{\alpha + \beta x_i}}$	binary (0,1) (categorical)	continuous
Regression, Poisson	$y_i = e^{\alpha + \beta x_i + \varepsilon_i}$	count data	continuous
Goodness of fit	$y_{ij} = np_j + \mathcal{E}_i$	categorical	categorical
Contingency	$y_{ijk} = np_j p_k + \varepsilon_i$	categorical	categorical

7 Strategies to Improve Models

- 7.1 Transform response variable (y).
- 7.2 Transform one or more explanatory variables (x).
- 7.3 Include different explanatory variable(s), if available.
- 7.4 Use different error structure.

l_model.pdf McLaughlin