1 Sample size needed for given width of confidence interval

- 1.1 Desired confidence interval \rightarrow how large sample size needed?
- 1.2 Suppose CI: $\overline{X} \pm d$, $d = \frac{1}{2}$ width of CI;
 - $d = t_{\alpha(2),\nu} s_{\overline{X}}$
 - sample size needed:

$$n = \frac{s^2}{d^2} t^2_{\alpha(2),(n-1)}$$
 (Zar, Eq. 7.7)

• reliability of estimate of n: depends on accuracy of approximation of σ^2 by s^2

2 Types of Errors

- 2.1 Type I error: incorrect rejection of a true null hypothesis
 - (= say is different when really is not)
- 2.2 Type II error: failure to reject false null hypothesis (= say is not different when really is)
- 2.3 Two other (correct) outcomes: (1) accept true H_0 ; (2) reject false H_0

3 Power of one-sample t-tests

- 3.1 Power of a test = probability of rejecting the null hypothesis when it is false Power = 1- β
 - 3 related ?'s: (1) sample size needed for given power
 - (2) Minimum difference detectable @ given power
 - (3) Power of test for given situation

3.2 Power depends on 4 factors:

- (1) significance level (α)
- (2) sample size (*n*)
- (3) difference between μ_0 and true μ (= δ)
- (4) sample variance, s^2

3.3 Three ways to increase power:

- (1) increase α (usually inadvisable, but sometimes warranted)
- (2) increase sample size
- (3) different statistical test
- 3.4 Sample size needed:

$$n = \frac{s^2}{\delta^2} (t_{\alpha,\nu} + t_{\beta(1),\nu})^2$$
 (Zar, Eq. 7.8)

• Problem: v depends on $n \Rightarrow$ cannot solve explicitly \rightarrow iterate, converge on solution

ESCI 340: Biostatistical Analysis

Statistical Power

3.5 Minimum difference that can be detected @ given power

- from Eq. 7.8, solve for δ : $\delta = \sqrt{\frac{s^2}{n}(t_{\alpha,\nu} + t_{\beta(1),\nu})}$
- n specified; can solve for δ explicitly

3.6 Power of a test for a given situation: α , n, δ .

• from Eq. 7.8, solve for t_{β} :

$$t_{\beta(1),\nu} = \frac{\delta}{\sqrt{\frac{s^2}{n}}} - t_{\alpha,\nu}$$

• solve explicitly (approximately; not all critical values of t-distribution given)

 \rightarrow if approximate $t_{\beta(1),\nu}$ w/ normal variable, $Z_{\beta(1)}$ then can determine β

4 Power of two-sample t-tests

4.1 Sample size needed:

$$n = \frac{2s_p^2}{\delta^2} (t_{\alpha,\nu} + t_{\beta(1),\nu})^2$$
 (Zar, Eq. 8.22)

• Problem: v depends on $n \Rightarrow$ cannot solve explicitly \rightarrow iterate, converge on solution

- 4.2 Minimum difference that can be detected @ given power
 - from Eq. 8.22, solve for δ : $\delta = \sqrt{\frac{2s_p^2}{n}}(t_{\alpha,\nu} + t_{\beta(1),\nu})$
 - n specified; can solve for δ explicitly

4.3 Power of a test for a given situation: α , n, δ .

- from Eq. 8.22, solve for t_{β} : $t_{\beta(1),\nu} = \frac{\delta}{\sqrt{\frac{2s_p^2}{n}}} - t_{\alpha,\nu}$
- solve explicitly (approximately; not all critical values of *t*-distribution given)
- \rightarrow if approximate $t_{\beta(1),\nu}$ w/ normal variable, $Z_{\beta(1)}$ then can determine β
- 5 For more information on statistical power, see Zar.
 - If you want to explore power further, see the following wwweb sites:

http://davidmlane.com/hyperstat/power.html (and links therein) http://www.psycho.uni-duesseldorf.de/aap/projects/gpower/how_to_use_gpower.html http://statpages.org/ http://www.mp1-pwrc.usgs.gov/powcase/index.html http://www.mp1-pwrc.usgs.gov/powcase/primer.html http://www.mp1-pwrc.usgs.gov/powcase/steps.html

Links to free power analysis packages:

http://statpages.org/#Power http://www.mp1-pwrc.usgs.gov/powcase/monitor.html http://www.psycho.uni-duesseldorf.de/aap/projects/gpower/ http://hotspur.psych.yorku.ca/SCS/Online/power/index.html