1 Simple Linear Regression: Background and Model

- 1.1 Regression vs. Correlation
	- 1.1.1 Roles of explanation vs. prediction in science
	- 1.1.2 Response vs. explanatory variables
	- 1.1.3 Regression vs. correlation: relationship betw/ variables regression: one variable (explanatory) *determines* other (response) correlation: both variables change together; *covary*
	- 1.1.4 When to use regression or correlation? regression to measure effect of one variable on other correlation to measure strength of association between variables
- 1.2 Other kinds of regression
	- 1.2.1 nonlinear regression
	- 1.2.2 multiple (= multivariate) regression
	- 1.2.3 logistic regression
- 1.3 Linear Model for Simple Linear Regression

$$
Y_i = \alpha + \beta X_i + \varepsilon_i
$$

$$
X_i = \text{explanatory variable}
$$

$$
Y_i = \text{response variable}
$$

1.4 Fitting Regression Model

1.4.1 Least Squares estimates for *a*, *b*:

minimize squared deviations of data points from regression line;

 \rightarrow minimize $\sum_{i=1}^{n} [Y_i - (a + bX_i)]^2$ *n* $-(a +$ = $\sum_{i}^{n} \left[Y_i - (a + bX_i) \right]^2$ 1 1.4.2 Σx^2 , Σy^2 , Σxy $\Sigma x^2 = \sum (X_i - \overline{X})^2$ machine formula: $\Sigma x^2 = \sum X_i^2 - (\sum \overline{X}^2)/n$ $\Sigma y^2 = \sum (Y_i - \overline{Y})^2$ $\Sigma xy = \sum (X_i - \overline{X})(Y_i - \overline{Y})$ 1.4.3 Regression coefficient (*b*)

$$
b = \frac{\sum xy}{\sum x^2} = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\sum (X_i - \overline{X})^2}
$$

potential values for *b*: $(-\infty, \infty)$

- 1.4.4 Y intercept (*a*):
	- from linear model, $Y_i = \alpha + \beta X_i \implies \alpha = \overline{Y} \beta \overline{X}$ estimate: $a = \overline{Y} - b\overline{X}$ need both *a*, *b* to specify unique regression line

1.5 Assumptions

- 1.5.1 For each *X* value, normal distribution of *Y* values (=> normal distribution of ε 's)
- 1.5.2 Equal variances − e.g., range, SD of *Y* values not ↑ w/ larger *X*
- 1.5.3 Actual relationship is linear

 $(1.5.1)$ - $(1.5.3)$ can be addressed w/ transformations

- 1.5.4 *Y*'s randomly sampled & independent of each other
- 1.5.5 *X* measurements w/out error (impossible; => assumption effectively is that *X* error negligible)
- 1.5.6 Concern about outliers

ESCI 340 BIOSTATISTICAL ANALYSIS **Simple Linear Regression** 2

2 Predicting the Response Variable (\hat{Y})

- 2.1 Knowing *a*, *b*, use regression eqn. to predict *Y*: $\hat{Y} = a + bX$
- 2.2 Caution: dangerous to extrapolate from regression equation

3 Testing significance of Regression

- 3.1 Hypotheses: H₀: $\beta = 0$ H_A: $\beta \neq 0$
- 3.2 Testing H_0 using ANOVA partition variability: total $SS = regression SS + residual SS$
- 3.3 Calculations
- 3.3.1 Total variability in response variable: deviations of *Yⁱ* from mean *Y* total SS = $\sum (Y_i - \overline{Y})^2 = \sum y^2$

3.3.2 Variability explained by regression: deviations of predicted
$$
\hat{Y}_i
$$
 from mean Y

regression SS =
$$
\sum (\hat{Y}_i - \overline{Y})^2 = \frac{(\sum xy)^2}{\sum x^2} = b \sum xy
$$

- 3.3.3 Variability not explained by regression residual SS = $\sum (Y_i - \hat{Y}_i)^2$ = total SS – regression SS
	- 3.3.4 Degrees of freedom total $DF = n - 1$ regression $DF = 1$ (always = 1 for simple linear regression) residual DF = total DF – regression DF = $n - 2$
	- 3.3.5 Mean Squares $MS = SS/DF$

3.3.6 *F*-statistic
$$
F = \frac{\text{regression MS}}{\text{residual MS}}
$$
 critical value: $F_{\alpha(1), v_1, v_2} = F_{\alpha(1), 1, n-2}$

3.4 Coefficient of determination, r^2 : proportion of total variation in *Y* explained by regression *r* $2 =$ regression SS total SS

3.5 Testing H_0 using t-test

3.5.1 Applications: *cannot be tested w/ ANOVA

*H*₀: $\beta = 0$ *H*_A: $\beta \neq 0$ *H*₀: $\beta = \beta_0$ *H*_A: $\beta \neq \beta_0$ * *H*₀: $\beta \ge \beta_0$ *H*_A: $\beta < \beta_0$ (one tailed tests) * 3.5.2 *t*-statistic

$$
t = \frac{b - \beta_0}{s_b}
$$

 s_b = standard error of regression coefficient

$$
\text{var}(b) = s_b^2 = \frac{s_{Y.X}^2}{\sum x^2} \qquad \qquad s_b = \sqrt{\frac{s_{Y.X}^2}{\sum x^2}} \qquad \text{were } s_{Y.X}^2 = \text{residual MS}
$$

ESCI 340 BIOSTATISTICAL ANALYSIS **Simple Linear Regression** 3

4 Confidence Intervals in Regression

- 4.1 General form for confidence intervals: $CI = statistic \pm (t_0)(SE \text{ of statistic})$
- 4.2 Confidence interval for regression coefficient, *b* 1− α confidence limits: $b \pm t_{\alpha(2),(n-2)} s_b$

5 Interpreting Regression Results

Regression \equiv fitting line to data; quantitative exercise Does not prove that relationship exists

6 Data Transformations in Regression

- 6.1 Purpose of transformations: to adjust distribution of data to satisfy assumptions (i.e., normality, equality of variances)
	- \rightarrow not to straighten curved lines
	- − e.g., log or sq.root transform may straighten points into line, but then other assumptions violated
- 6.2 Transformations of explanatory data (*X*) not affect distribution of *Y*, so can be used to straighten curved line

Caution with transformation of response data (*Y*):

 \rightarrow inappropriate transformation will violate assumptions

6.3 Inspection of Residuals

7 Comparing Two Slopes

- 7.1 Hypotheses: H_0 : $\beta_1 = \beta_2$ H_A : $\beta_1 \neq \beta_2$
- 7.2 Student's *t*-test:
- 7.3 test statistic:

$$
t = \frac{b_1 - b_2}{s_{b_1 - b_2}} \qquad S_{b_1 - b_2} = \sqrt{\frac{(s_{YX}^2)_{p}}{\left(\sum x^2\right)_1} + \frac{(s_{YX}^2)_{p}}{\left(\sum x^2\right)_2}}
$$

$$
(s_{YX}^2)_{p} = \frac{\text{(residual SS)}_1 + \text{(residual SS)}_2}{\text{(residual DF)}_1 + \text{(residual DF)}_2}
$$

- 7.4 Critical value (*t*) has $(n_1 2) + (n_2 2)$ degrees of freedom: $v = n_1 + n_2 - 4$
- 7.5 If H_0 not rejected, estimate common regression coefficient:

$$
b_c = \frac{\left(\sum xy\right)_1 + \left(\sum xy\right)_2}{\left(\sum x^2\right)_1 + \left(\sum x^2\right)_2}
$$

or (w/ more rounding error):

$$
b_c = \frac{\left(\sum x^2\right)_1 b_1 + \left(\sum x^2\right)_2 b_2}{\left(\sum x^2\right)_1 + \left(\sum x^2\right)_2}
$$