1 Simple Linear Regression: Background and Model

- 1.1 Regression vs. Correlation
 - 1.1.1 Roles of explanation vs. prediction in science
 - 1.1.2 Response vs. explanatory variables
 - 1.1.3 Regression vs. correlation: relationship betw/ variables regression: one variable (explanatory) *determines* other (response) correlation: both variables change together; *covary*
 - 1.1.4 When to use regression or correlation? <u>regression</u> to measure effect of one variable on other <u>correlation</u> to measure strength of association between variables
- 1.2 Other kinds of regression
 - 1.2.1 nonlinear regression
 - 1.2.2 multiple (= multivariate) regression
 - 1.2.3 logistic regression
- 1.3 Linear Model for Simple Linear Regression

$$Y_i = \alpha + \beta X_i + \varepsilon_i$$
 $X_i =$ explanatory variable $Y_i =$ response variable

1.4 Fitting Regression Model

1.4.1 Least Squares estimates for *a*, *b*:

minimize squared deviations of data points from regression line;

 $\rightarrow \text{ minimize } \sum_{i=1}^{n} \left[Y_{i} - (a + bX_{i}) \right]^{2}$ $1.4.2 \ \Sigma x^{2}, \Sigma y^{2}, \Sigma xy$ $\Sigma x^{2} = \sum (X_{i} - \overline{X})^{2}$ $\text{ machine formula: } \Sigma x^{2} = \sum X_{i}^{2} - \left(\sum \overline{X}^{2}\right) / n$ $\Sigma y^{2} = \sum (Y_{i} - \overline{Y})^{2}$ $\Sigma xy = \sum (X_{i} - \overline{X})(Y_{i} - \overline{Y})$ 1.4.3 Regression coefficient (b) $\sum Xy = \sum (X_{i} - \overline{X})(Y_{i} - \overline{Y})$

$$b = \frac{\sum xy}{\sum x^2} = \frac{\sum (X_i - X)(Y_i - Y)}{\sum (X_i - \overline{X})^2}$$

potential values for *b*: $(-\infty, \infty)$

- 1.4.4 Y intercept (*a*):
 - from linear model, $Y_i = \alpha + \beta X_i \implies \alpha = \overline{Y} \beta \overline{X}$ estimate: $a = \overline{Y} - b\overline{X}$ need both *a*, *b* to specify unique regression line

1.5 Assumptions

- 1.5.1 For each *X* value, normal distribution of *Y* values $(=> normal distribution of \epsilon's)$
- 1.5.2 Equal variances e.g., range, SD of Y values not \uparrow w/ larger X
- 1.5.3 Actual relationship is linear

(1.5.1)-(1.5.3) can be addressed w/ transformations

- 1.5.4 Y's randomly sampled & independent of each other
- 1.5.5 *X* measurements w/out error (impossible; => assumption effectively is that *X* error negligible)
- 1.5.6 Concern about outliers

Simple Linear Regression

2 Predicting the Response Variable (\hat{Y})

- 2.1 Knowing *a*, *b*, use regression eqn. to predict *Y*: $\hat{Y} = a + bX_i$
- 2.2 Caution: dangerous to extrapolate from regression equation

3 Testing significance of Regression

- 3.1 Hypotheses: $H_0: \beta = 0$ $H_A: \beta \neq 0$
- 3.2 Testing H_0 using ANOVA partition variability: total SS = regression SS + residual SS
- 3.3 Calculations
 - 3.3.1 Total variability in response variable: deviations of Y_i from mean Ytotal SS = $\sum (Y_i - \overline{Y})^2 = \sum y^2$

3.3.2 Variability explained by regression: deviations of predicted
$$Y_i$$
 from mean Y

regression SS =
$$\sum (\hat{Y}_i - \overline{Y})^2 = \frac{(\sum xy)^2}{\sum x^2} = b \sum xy$$

- 3.3.3 Variability <u>not</u> explained by regression residual SS = $\sum (Y_i - \hat{Y}_i)^2$ = total SS – regression SS
- 3.3.4 Degrees of freedom total DF = n - 1regression DF = 1 (always = 1 for simple linear regression) residual DF = total DF - regression DF = n - 2
- 3.3.5 Mean Squares MS = SS/DF

3.3.6 *F*-statistic $F = \frac{\text{regression MS}}{\text{residual MS}}$ critical value: $F_{\alpha(1),\nu_1,\nu_2} = F_{\alpha(1),1,n-2}$

3.4 Coefficient of determination, r^2 : proportion of total variation in *Y* explained by regression $r^2 = \frac{\text{regression SS}}{\text{total SS}}$

3.5 Testing H₀ using t-test

3.5.1 Applications:

*cannot be tested w/ ANOVA

 $H_{0}: \beta = 0 \qquad H_{A}: \beta \neq 0$ $H_{0}: \beta = \beta_{0} \qquad H_{A}: \beta \neq \beta_{0} \qquad *$ $H_{0}: \beta \geq \beta_{0} \qquad H_{A}: \beta < \beta_{0} \quad \text{(one tailed tests) } *$ $3.5.2 \ t\text{-statistic}$ $h = \beta$

$$t = \frac{b - \beta_0}{s_b}$$

 s_b = standard error of regression coefficient

$$\operatorname{var}(b) = s_b^2 = \frac{s_{Y \cdot X}^2}{\sum x^2}$$
 $s_b = \sqrt{\frac{s_{Y \cdot X}^2}{\sum x^2}}$ were $s_{Y \cdot X}^2$ = residual MS

Simple Linear Regression

4 Confidence Intervals in Regression

- 4.1 General form for confidence intervals: $CI = statistic \pm (t_{\alpha})(SE \text{ of statistic})$
- 4.2 Confidence interval for regression coefficient, b

1- α confidence limits: $b \pm t_{\alpha(2),(n-2)}s_b$

5 Interpreting Regression Results

Regression \cong fitting line to data; quantitative exercise Does not prove that relationship exists

6 Data Transformations in Regression

- 6.1 Purpose of transformations: to adjust distribution of data to satisfy assumptions (i.e., normality, equality of variances)
 - \rightarrow not to straighten curved lines
 - e.g., log or sq.root transform may straighten points into line, but then other assumptions violated
- 6.2 Transformations of explanatory data (*X*) not affect distribution of *Y*, so can be used to straighten curved line

Caution with transformation of response data (*Y*):

 \rightarrow inappropriate transformation will violate assumptions

6.3 Inspection of Residuals

7 Comparing Two Slopes

- 7.1 Hypotheses: $H_0: \beta_1 = \beta_2$ $H_A: \beta_1 \neq \beta_2$
- 7.2 Student's *t*-test:
- 7.3 test statistic:

- 7.4 Critical value (t) has $(n_1 2) + (n_2 2)$ degrees of freedom: $v = n_1 + n_2 - 4$
- 7.5 If H_0 not rejected, estimate common regression coefficient:

$$b_{c} = \frac{\left(\sum xy\right)_{1} + \left(\sum xy\right)_{2}}{\left(\sum x^{2}\right)_{1} + \left(\sum x^{2}\right)_{2}}$$

or (w/ more rounding error):

$$b_{c} = \frac{\left(\sum x^{2}\right)_{1}b_{1} + \left(\sum x^{2}\right)_{2}b_{2}}{\left(\sum x^{2}\right)_{1} + \left(\sum x^{2}\right)_{2}}$$