ESCI 340: Biostatistical Analysis

Nomenclature

Populations and samples: N (usually) is number of individuals in population n is number of individuals in sample

 n_i is number of individuals in i^{th} sample

Summation:

$$\sum_{i=1}^{n} X_{i} = X_{1} + X_{2} + \dots + X_{n}$$
e.g.,
$$\sum_{i=1}^{4} X_{i} = X_{1} + X_{2} + X_{3} + X_{4}$$

$$\sum_{j=1}^{n} X_{i,j} = X_{i,1} + X_{i,2} + \dots + X_{i,n}$$
e.g.,
$$\sum_{j=1}^{4} X_{ij} = X_{i1} + X_{i2} + X_{i3} + X_{i4}$$

$$\sum_{a}^{A} \sum_{b}^{B} X_{a,b} = (X_{1,1} + X_{1,2} + \dots + X_{1,n}) + (X_{2,1} + \dots + X_{2,n}) + \dots$$
Means: population mean:
$$\mu = \frac{\sum_{i=1}^{N} X_{i}}{N}$$
sample mean:
$$\overline{X} = \frac{\sum_{i=1}^{n} X_{i}}{n}$$
Median: middle measurement in ordered set of data (central data point)

$$M = X_{(n+1)/2}$$
if N even, average of 2
Geometric mean (GM):
$$\overline{X}_{G} = \sqrt[n]{X_{1}X_{2}X_{3}\cdots X_{n}} = \sqrt[n]{\prod_{i=1}^{n} X_{i}}$$
Variance: population variance:
$$\sigma^{2} = \sum \frac{(X_{i} - \mu)^{2}}{N}$$
sample variance:
$$s^{2} = \sum \frac{(X_{i} - \overline{X})^{2}}{n-1}$$
Standard Deviation (SD): population SD:
$$\sigma = \sqrt{\sigma^{2}} = \sqrt{\sum \frac{(X_{i} - \mu)^{2}}{N}}$$
sample SD:
$$s = \sqrt{s^{2}} = \sqrt{\sum \frac{(X_{i} - \overline{X})^{2}}{n-1}}$$

Coefficient of Variation (CV) $CV = 100 \times \frac{s}{\overline{X}}$ Standard Error (SE): SE of the mean: $s_{\overline{X}} = \sqrt{\frac{s^2}{n}}$

Note: different formulae for SE of difference between means $s_{\overline{X}_1 - \overline{X}_2}$, etc 1- α Confidence Interval: CI = $\overline{X} \pm t_{\alpha,\nu} \times SE$

Null hypothesis: H_0 Alternative hypothesis: H_A

Significance level: α = probability of (incorrectly) rejecting a true null hypothesis

P-value: Given a true H₀, *P*-value is the probability of obtaining a test statistic at least as extreme as the one obtained.
Degrees of Freedom: v

l_symbol.pdf