ESCI 340: BIOSTATISTICAL ANALYSIS

Multiple Comparison Test

I. Applications of Multiple Comparison Test

II. Assumptions: same as ANOVA; normal populations, equal variances

- appears to be robust to violations of assumptions

- violation of equal variances more serious

III. Hypotheses:

H₀: $\mu_A = \mu_B$ H_A: $\mu_A \neq \mu_B$ A & B represent any possible pair of groups if k groups, k(k-1)/2 different pairwise comparisons

IV. Tukey Test:

- A. Step 1: arrange & number all sample means in order of increasing magnitude
- B. **Step 2:** calculate pairwise differences, $\overline{X}_B \overline{X}_A$
- C. **Step 3:** calculate "q", analogous to "t" in t-test:

$$q = \frac{\overline{X}_B - \overline{X}_A}{SE} \qquad SE = \sqrt{\frac{\text{error MS}}{n}}$$

if sample sizes unequal,
$$SE = \sqrt{\frac{s^2}{2} \left(\frac{1}{n_A} + \frac{1}{n_B}\right)}$$

- D. Step 4: compare w/ critical value, $q_{\alpha,\nu,k}$ Zar, Table B5 $\alpha = P\{\text{make at least one type I error}\}, \text{ not } P(\text{type I error for a given comparison})$ $\rightarrow \text{ if } qcalc \ge q_{\alpha,\nu,k} \text{ then reject Ho}$
- E. Order of comparisons
 - 1) 1st, largest mean vs. smallest
 2) 2nd, largest mean vs. next smallest
 3) etc.
- F. If cannot conclude difference betw/ 2 means, cannot conclude diff betw/ any means enclosed \Rightarrow do not test for differences in means enclosed by non-significant differences
- G. Dealing w/ ambiguity in results

\overline{X}_1 \overline{X}_2 \overline{X}_3 \overline{X}_4	=> samples 1&2 from different pop. than 2,3,4
	impossible (2 from >1 pop)
	conc: $\mu_1 \neq \mu_3 = \mu_4$, but cannot determine μ_2

H. Single-Factor ANOVA more powerful than multiple comparison test (Type II errors more likely in multiple comparison test)