griz.3zone.mat.txt McLaughlin rev 2/1/2017 Metapopulation matrix for set of three Grizzly Recovery Zones, Northern Continental Divide (NCDE), Greater Yellowstone (GYE), and Selway-Bitterroot (SB) Metapopulation matrix from Hanski & Ovaskainen 2000. Nature 404:755-758. Matrix M has elements for every pair of Recovery Zones; m_ii = 0 m_ij = A_i*A_j exp(-alpha*d_ij) (i<>j) where A_i = area of patch i 1/alpha = mean dispersal distance d_ij = distance betw/ patches i and j Assume mean dispersal distance = 20 km, (males =29.9km, females=9.8km) Dispersal data from: McLellan BN and FW Hovey 2001. Natal dispersal of grizzly bears. Can.J.Zool. 79(5)838-844. # ~~~~~~~~~~~~~~~~~~~~~~ R commands only ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ griz.zones.3name <- c("NCDE","GYE","Sel-Broot") griz.zones.3name griz.zones.3area <- c(24864, 24645, 14027) # area in km^2 griz.zones.3area # create metapop matrix elements, m_ij alpha.griz <- 1/20 # mean dispersal distance = 20km alpha.griz gm.ncd.gye <- 24864*24645*exp(-1*alpha.griz*155) gm.ncd.gye gm.ncd.sb <- 24864*14027*exp(-1*alpha.griz*61) gm.ncd.sb gm.gye.sb <- 24645*14027*exp(-1*alpha.griz*200) gm.gye.sb # Assemble individual matrix elements, m_ij, into metapopulation matrix, M: griz.mat.3zone <- matrix(c(0, gm.ncd.gye, gm.ncd.sb, gm.ncd.gye, 0, gm.gye.sb, gm.ncd.sb, gm.gye.sb, 0), byrow=T, nrow=3, ncol=3) griz.mat.3zone # Calculate eigenvalues and eigenvectors: griz.LM <- eigen(griz.mat.3zone) griz.LM # Metapopulation potential, lambda_M = dominant eigenvalue = 1.651961e+07 # Fractional (out of 1) contribution of NCDE, GYE, SB # = square of 1st element of leading eigenvector # Calculate for all 3 grizzly zones griz.LM$vectors[,1]^2 # ~~~~~~~~~~~~~~~~ Results using commands above ~~~~~~~~~~~~~~~ > griz.zones.3name <- c("NCDE","GYE","Sel-Broot") > griz.zones.3name [1] "NCDE" "GYE" "Sel-Broot" > griz.zones.3area <- c(24864, 24645, 14027)# area in km^2 > griz.zones.3area [1] 24864 24645 14027 > > # create metapop matrix elements, m_ij > alpha.griz <- 1/20# mean dispersal distance = 20km > alpha.griz [1] 0.05 > > gm.ncd.gye <- 24864*24645*exp(-1*alpha.griz*155) > gm.ncd.gye [1] 263947.5 > > gm.ncd.sb <- 24864*14027*exp(-1*alpha.griz*61) > gm.ncd.sb [1] 16517246 > > gm.gye.sb <- 24645*14027*exp(-1*alpha.griz*200) > gm.gye.sb [1] 15694.55 > > # Assemble individual matrix elements, m_ij, into metapopulation matrix, M: > > griz.mat.3zone <- matrix(c(0, gm.ncd.gye, gm.ncd.sb, + gm.ncd.gye, 0, gm.gye.sb, + gm.ncd.sb, gm.gye.sb, 0), + byrow=T, nrow=3, ncol=3) > griz.mat.3zone [,1] [,2] [,3] [1,] 0.0 263947.52 16517245.52 [2,] 263947.5 0.00 15694.55 [3,] 16517245.5 15694.55 0.00 > > # Calculate eigenvalues and eigenvectors: > > griz.LM <- eigen(griz.mat.3zone) > griz.LM $values [1] 1.651961e+07 -5.014729e+02 -1.651911e+07 $vectors [,1] [,2] [,3] [1,] -0.70710110 0.0009495847 0.70711183 [2,] -0.01196964 -0.9998718920 -0.01062672 [3,] -0.70701115 0.0159780412 -0.70702188 > # Metapopulation potential, lambda_M = dominant eigenvalue = 1.651961e+07 > > # Fractional (out of 1) contribution of NCDE, GYE, SB > #= square of 1st element of leading eigenvector > # Calculate for all 3 grizzly zones > griz.LM$vectors[,1]^2 [1] 0.4999919600 0.0001432723 0.4998647677 > # NCDE = 50.00%, GYE = 0.01%, SB = 49.98%